Informative Descriptor Preservation via Commutativity for Shape Matching
نویسندگان
چکیده
We consider the problem of non-rigid shape matching, and specifically the functional maps framework that was recently proposed to find correspondences between shapes. A key step in this framework is to formulate descriptor preservation constraints that help to encode the information (e.g., geometric or appearance) that must be preserved by the unknown map. In this paper, we show that considering descriptors as linear operators acting on functions through multiplication, rather than as simple scalar-valued signals, allows to extract significantly more information from a given descriptor and ultimately results in a more accurate functional map estimation. Namely, we show that descriptor preservation constraints can be formulated via commutativity with respect to the unknown map, which can be conveniently encoded by considering relations between matrices in the discrete setting. As a result, when the vector space spanned by the descriptors has a dimension smaller than that of the reduced basis, our optimization may still provide a fully-constrained system leading to accurate point-to-point correspondences, while previous methods might not. We demonstrate on a wide variety of experiments that our approach leads to significant improvement for functional map estimation by helping to reduce the number of necessary descriptor constraints by an order of magnitude, even given an increase in the size of the reduced basis.
منابع مشابه
New Pseudo-CT Generation Approach from Magnetic Resonance Imaging using a Local Texture Descriptor
Background: One of the challenges of PET/MRI combined systems is to derive an attenuation map to correct the PET image. For that, the pseudo-CT image could be used to correct the attenuation. Until now, most existing scientific researches construct this pseudo-CT image using the registration techniques. However, these techniques suffer from the local minima of the non-rigid deformation energy f...
متن کاملShape Analogies via Group Shape Difference Analysis
In this project, we proposed a novel framework to solve the shape analogies problem between 3D shape collections. Instead of using geometric features based on individuals to describe each shape, we leveraged the idea that fine grained characteristic of a shape can be defined by other similar shapes, and used relationship within collections to depict shapes. To capture the abstract relationship,...
متن کاملBilateral Maps for Partial Matching
Feature-driven analysis forms the basis of many shape processing tasks, where detected feature points are characterized by local shape descriptors. Such descriptors have so far been defined to capture regions of interest centered at individual points. Using such regions to compare feature points can be problematic when performing partial shape matching, since the region of interest is typically...
متن کاملTemporal 3d Shape Matching
This paper introduces a novel 4D shape descriptor to match temporal surface sequences. A quantitative evaluation based on the Receiver-Operator Characteristic (ROC) curve is presented to compare the performance of conventional 3D shape descriptors with and without using a time filter. Featurebased 3D Shape Descriptors including Shape Distribution [24], Spin Image [14], Shape Histogram [1] and S...
متن کاملPerceptually motivated shape context which uses shape interiors
In this paper, we identify some of the limitations of current-day shape matching techniques. We provide examples of how contour-based shape matching techniques cannot provide a good match for certain visually similar shapes. To overcome this limitation, we propose a perceptually motivated variant of the well-known shape context descriptor. We identify that the interior properties of the shape p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comput. Graph. Forum
دوره 36 شماره
صفحات -
تاریخ انتشار 2017